Вариант № 6555

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
1
Задание № 331
i

Функ­ция y= дробь: чис­ли­тель: 1, зна­ме­на­тель: ко­си­нус x конец дроби не опре­де­ле­на в точке:



2
Задание № 602
i

Пусть O и O1  — цен­тры ос­но­ва­ний ци­лин­дра, изоб­ра­жен­но­го на ри­сун­ке. Тогда об­ра­зу­ю­щей ци­лин­дра яв­ля­ет­ся от­ре­зок:



3
Задание № 453
i

Сумма всех на­ту­раль­ных де­ли­те­лей числа 20 равна:



4
Задание № 514
i

Даны квад­рат­ные урав­не­ния:

Ука­жи­те урав­не­ние, ко­то­рое не имеет кор­ней.



5
Задание № 515
i

Если 10 в квад­ра­те умно­жить на альфа =925,84277, то зна­че­ние α с точ­но­стью до сотых равно:



6
Задание № 906
i

Ве­ли­чи­ны a и b яв­ля­ют­ся прямо про­пор­ци­о­наль­ны­ми. Ис­поль­зуя дан­ные таб­ли­цы, най­ди­те не­из­вест­ное зна­че­ние ве­ли­чи­ны a.

 

a2,9
b1148,7


7
Задание № 967
i

Най­ди­те пло­щадь фи­гу­ры, изоб­ра­жен­ной на ри­сун­ке.



8
Задание № 368
i

От листа жести, име­ю­ще­го форму квад­ра­та, от­ре­за­ли пря­мо­уголь­ную по­ло­су ши­ри­ной 2 дм, после чего пло­щадь остав­шей­ся части листа ока­за­лась рав­ной 15 дм2. Длина сто­ро­ны квад­рат­но­го листа (в де­ци­мет­рах) была равна:



9
Задание № 969
i

Най­ди­те зна­че­ние вы­ра­же­ния НОК(8, 12, 48)+НОД(30,42).



10
Задание № 400
i

Пло­щадь осе­во­го се­че­ния ци­лин­дра равна 20. Пло­щадь его бо­ко­вой по­верх­но­сти равна:



11
Задание № 491
i

Че­ты­рех­уголь­ник MNPK, в ко­то­ром ∠N=124°, впи­сан в окруж­ность. Най­ди­те гра­дус­ную меру угла K.



12
Задание № 462
i

На одной чаше урав­но­ве­шен­ных весов лежат 3 яб­ло­ка и 1 груша, на дру­гой  — 2 яб­ло­ка, 2 груши и гирь­ка весом 20 г. Каков вес одной груши (в грам­мах), если все фрук­ты вме­сте весят 780 г? Счи­тай­те все яб­ло­ки оди­на­ко­вы­ми по весу и все груши оди­на­ко­вы­ми по весу.



13
Задание № 103
i

Най­ди­те длину сред­ней линии пря­мо­уголь­ной тра­пе­ции с ост­рым углом 60°, у ко­то­рой боль­шая бо­ко­вая сто­ро­на и боль­шее ос­но­ва­ние равны 10.



14
Задание № 584
i

Упро­сти­те вы­ра­же­ние

 левая круг­лая скоб­ка 3 плюс дробь: чис­ли­тель: 9b в квад­ра­те плюс a в квад­ра­те минус c в квад­ра­те , зна­ме­на­тель: 2ab конец дроби пра­вая круг­лая скоб­ка : левая круг­лая скоб­ка a плюс 3b плюс c пра­вая круг­лая скоб­ка умно­жить на 2ab.



15
Задание № 15
i

Со­кра­ти­те дробь  дробь: чис­ли­тель: 16 минус левая круг­лая скоб­ка x плюс 3 пра­вая круг­лая скоб­ка в квад­ра­те , зна­ме­на­тель: x в квад­ра­те плюс 9x плюс 14 конец дроби .



16

ABCDA1B1C1D1  — пря­мо­уголь­ный па­рал­ле­ле­пи­пед такой, что AB=12, AD=3. Через се­ре­ди­ны ребер AA1 и BB1 про­ве­де­на плос­кость (см.рис.), со­став­ля­ю­щая угол 60° с плос­ко­стью ос­но­ва­ния ABCD. Най­ди­те пло­щадь се­че­ния па­рал­ле­ле­пи­пе­да этой плос­ко­стью.



17
Задание № 407
i

Рас­по­ло­жи­те числа  ко­рень 5 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та ; ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та ; ко­рень 15 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 28 конец ар­гу­мен­та в по­ряд­ке воз­рас­та­ния.



18
Задание № 558
i

Ко­рень урав­не­ния

 ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 0,2 пра­вая круг­лая скоб­ка дробь: чис­ли­тель: 7 минус 3x, зна­ме­на­тель: 2x минус 9 конец дроби плюс ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 0,2 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка левая круг­лая скоб­ка 7 минус 3x пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 2x минус 9 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка =0

(или сумма кор­ней, если их не­сколь­ко) при­над­ле­жит про­ме­жут­ку:



19
Задание № 979
i

Для по­крас­ки стен общей пло­ща­дью 175 м2 пла­ни­ру­ет­ся за­куп­ка крас­ки. Объем и сто­и­мость банок с крас­кой при­ве­де­ны в таб­ли­це.

 

Объем банки

(в лит­рах)

Сто­и­мость банки с крас­кой

(в руб­лях)

2,5

85 000

10

290 000

 

Какую ми­ни­маль­ную сумму (в руб­лях) по­тра­тят на по­куп­ку не­об­хо­ди­мо­го ко­ли­че­ства крас­ки, если ее рас­ход со­став­ля­ет 0,2 л/м2?


Ответ:

20
Задание № 590
i

Ре­ши­те урав­не­ние  ко­рень из: на­ча­ло ар­гу­мен­та: x минус 3 конец ар­гу­мен­та минус ко­рень из: на­ча­ло ар­гу­мен­та: левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 3 пра­вая круг­лая скоб­ка конец ар­гу­мен­та =0. В ответ за­пи­ши­те сумму его кор­ней (ко­рень, если он один).


Ответ:

21
Задание № 561
i

Ос­но­ва­ние ост­ро­уголь­но­го рав­но­бед­рен­но­го тре­уголь­ни­ка равно 2, а синус про­ти­во­по­лож­но­го ос­но­ва­нию угла равен 0,8. Най­ди­те пло­щадь тре­уголь­ни­ка.


Ответ:

22
Задание № 832
i

Пусть (x1; y1), (x2; y2)  — ре­ше­ния си­сте­мы урав­не­ний  си­сте­ма вы­ра­же­ний x в квад­ра­те плюс 2x=12 плюс 3y,2x минус 3y=3. конец си­сте­мы .

Най­ди­те зна­че­ние вы­ра­же­ния x_1y_2 плюс x_2y_1.


Ответ:

23
Задание № 1013
i

Най­ди­те зна­че­ние вы­ра­же­ния 12 умно­жить на левая круг­лая скоб­ка ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 3 ко­рень из 3 конец ар­гу­мен­та минус ко­рень 5 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 49 ко­рень из 7 конец ар­гу­мен­та пра­вая круг­лая скоб­ка : левая круг­лая скоб­ка ко­рень из 3 плюс ко­рень из 7 пра­вая круг­лая скоб­ка минус 6 ко­рень из: на­ча­ло ар­гу­мен­та: 21 конец ар­гу­мен­та .


Ответ:

24
Задание № 984
i

Най­ди­те сумму кор­ней урав­не­ния  левая круг­лая скоб­ка x минус 32 пра­вая круг­лая скоб­ка умно­жить на левая круг­лая скоб­ка 4 в сте­пе­ни x плюс 7 умно­жить на 2 в сте­пе­ни левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка минус 32 пра­вая круг­лая скоб­ка =0.


Ответ:

25
Задание № 505
i

Ре­ши­те урав­не­ние x в квад­ра­те минус 7x плюс 10= дробь: чис­ли­тель: 18, зна­ме­на­тель: x в квад­ра­те минус 5x плюс 4 конец дроби и най­ди­те сумму его кор­ней.


Ответ:

26
Задание № 476
i

Най­ди­те зна­че­ние вы­ра­же­ния 8 ко­си­нус левая круг­лая скоб­ка альфа плюс дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка , если  синус 2 альфа = дробь: чис­ли­тель: 23, зна­ме­на­тель: 32 конец дроби , 2 альфа при­над­ле­жит левая круг­лая скоб­ка дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби ; Пи пра­вая круг­лая скоб­ка .


Ответ:

27
Задание № 777
i

Най­ди­те сумму целых ре­ше­ний не­ра­вен­ства  дробь: чис­ли­тель: |6x минус 12| минус |4x минус 18|, зна­ме­на­тель: левая круг­лая скоб­ка x плюс 5 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 4 пра­вая круг­лая скоб­ка конец дроби мень­ше или равно 0.


Ответ:

28
Задание № 88
i

Пря­мо­уголь­ный тре­уголь­ник с ка­те­та­ми, рав­ны­ми 6 и 2 ко­рень из 7 , вра­ща­ет­ся во­круг оси, со­дер­жа­щей его ги­по­те­ну­зу. Най­ди­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: 2V, зна­ме­на­тель: Пи конец дроби , где V  — объём фи­гу­ры вра­ще­ния.


Ответ:

29
Задание № 419
i

Ко­ли­че­ство целых ре­ше­ний не­ра­вен­ства 3 в сте­пе­ни левая круг­лая скоб­ка x плюс 8 пра­вая круг­лая скоб­ка плюс ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 0,5 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 27 минус x пра­вая круг­лая скоб­ка боль­ше 22 равно ...


Ответ:

30
Задание № 990
i

Объем пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да ABCDA1B1C1D1 равен 864. Точка P лежит на бо­ко­вом ребре CC1 так, что CP : PC1 = 2 : 1. Через точку P, вер­ши­ну D и се­ре­ди­ну бо­ко­во­го ребра AA1 про­ве­де­на се­ку­щая плос­кость, ко­то­рая делит пря­мо­уголь­ный па­рал­ле­ле­пи­пед на две части. Най­ди­те объём боль­шей из ча­стей.


Ответ:
Завершить работу, свериться с ответами, увидеть решения.